
EMS®: A Massive Computational Experiment Management System
towards Data-driven Robotics

Qinjie Lin1 Guo Ye1 Han Liu12

Abstract— We propose EMS®, a cloud-enabled massive com-
putational experiment management system supporting high-
throughput computational robotics research. Compared to ex-
isting systems, EMS® features a sky-based pipeline orchestrator
which allows us to exploit heterogeneous computing environ-
ments painlessly (e.g., on-premise clusters, public clouds, edge
devices) to optimally deploy large-scale computational jobs
(e.g., with more than millions of computational hours) in an
integrated fashion. Cornerstoned on this sky-based pipeline
orchestrator, this paper introduces three abstraction layers of
the EMS® software architecture: (i) Configuration manage-
ment layer focusing on automatically enumerating experimental
configurations; (ii) Dependency management layer focusing on
managing the complex task dependencies within each exper-
imental configuration; (iii) Computation management layer
focusing on optimally executing the computational tasks using
the given computing resource. Such an architectural design
greatly increases the scalability and reproducibility of data-
driven robotics research leading to much-improved productiv-
ity. To demonstrate this point, we compare EMS® with more
traditional approaches on an offline reinforcement learning
problem for training mobile robots. Our results show that
EMS® outperforms more traditional approaches in two mag-
nitudes of orders (in terms of experimental high throughput
and cost) with only several lines of code change. We also
exploit EMS® to develop mobile robot, robot arm, and bipedal
applications, demonstrating its applicability to numerous robot
applications.

Index Terms— computational robotics, cloud robotics, mas-
sive computational experiments, sky computing

I. INTRODUCTION

We are witnessing the emergence of massive computation
as a fundamental strategy in modern robotics research. For
example, OpenAI uses 6,144 CPU cores and 8 GPUs to
train a robot hand manipulation policy [1] for about 50
hours, and Deepmind takes 340 million training steps to
train AlphaGo [2], with 50 GPUs for about 500 hours.
More examples include not only traditional hardware robots
such as legged locomotion [3]–[11], manipulation [12]–
[21], and navigation [22]–[30], but also software robots
like conversational agents [31]–[35] and game AI [36]–[40].
Though these research fields are seemingly diversified, they
address the same scientific question: “Which configuration is
optimal for a given utility?” A principled approach that sys-
tematically answers this question is massive computational
experiments [41], which complements two other important

1Department of Computer Science, Northwestern University, Evanston,
IL, USA. hanliu@northwestern.edu, qinjielin2018,
guoye2018@u.northwestern.edu

2Han Liu’s research is partly supported by NIH R01LM1372201, NSF
CAREER1841569 and a NSF TRIPODS1740735.

Fig. 1. Examples of EMS®on robotics experiments. (a) shows
bipedal training tasks on public cloud computation, (b) illustrates
motion planning tasks of a robot arm, on a private cluster, (c)
demonstrates collision avoidance performance of turtlebot, using
onboard computation. These show sky-features of robot pipelines.
(d) shows traditional pipeline and improved pipeline in EMS®. It
consists of training 64 policies, testing the trained policies, and
deploying the best policy on turtlebot. Specifically, the cluster can
afford parallel training for a maximum of 16 policies within 20
minutes and the other 48 are scheduled on aws or the same cluster.
The testing tasks are both scheduled on the cluster and deployments
are on turtlebot’s onboard computation in 20 minutes.

scientific methods for modern robotics research: mathemat-
ical analysis and physical experimentation. Compared to
massive computational experiments, mathematical analysis
can not be conducted in many realistic settings since it
generally requires stylized simplification of formal models,
while physical experimentation is not applicable on larger
scales due to its expensiveness in time and budget. To
implement the massive computation strategy, the most crucial
step is to develop an experiment management system [41].

Though some general-purpose experiment management
systems have been developed [41]–[43], they are not directly
applicable to modern robotics research due to the challenge
that a sophisticated intelligent robot pipeline generally re-
quires the usage of heterogeneous computational resources
ranging from edge devices, on-premise deployment, public
cloud, etc. In contrast, most existing systems are cluster or
cloud-specific. To illustrate the multi-cloud nature of data-



driven robotics applications, we consider an example of
developing a reinforcement learning-based retail navigation
robot. In this application, data collection should be run in an
edge robot network, the decision model could be deployed
on some public cloud (e.g., AWS, GCP, Azure), while the
very intensive data storage has better to be on some on-
premise cluster due to the budget concern. In this scenario,
developers need to repeatedly transfer data between different
components in the pipeline. More sky-based pipelines are
illustrated in Figure 1.

Fig. 2. An overview of EMS®. EMS® enables sky-based pipeline
orchestration. It consists of three layers: (i) Computation man-
agement layer abstracting clouds computing and selecting cloud
on which various jobs are supposed to run on; (ii) Dependency
management layer managing complex dependency in the pipeline;
(iii) Configuration management layer automatically enumerating
experimental configurations.

To handle the above challenge, we propose
EMS® (Experiment Management System for Robots),
a cloud-enable massive computational experiment
management system for robotics research (See Figure
2 for more details). Unlike most existing experiment
management systems [44]–[51] which are specific to a
particular cloud or cluster environment, EMS® supports a
full-fledged orchestration of sky-based experiment pipelines,
enabling different clouds or clusters to run various stages
of a robotics research pipeline. In particular, the system
provides a highly sophisticated abstraction of the underlying
computation platforms such that researchers only need
to change one line of code to run the experiment across
different computation environments, without worrying about
the data transfer and cloud service interface. In addition,
EMS® automatically optimizes resource allocation according
to given time and budget constraints.

The EMS® architecture consists of three abstraction lay-
ers, shown in Figure 2. (i) A sky-based computation layer
providing a unified and easy-to-use API for submitting,
monitoring, and canceling massive-scale computational jobs.
This layer abstracts out the implementation details of all
computing resources to free higher-level layers from the
perceived complexity of using different cloud services. (ii) A
dependency management layer using a DAG (directed acyclic
graph) representation to orchestrate a task pipeline within
an experiment. This layer features a sophisticated version
controller which allows us to best reuse results from pre-
vious experiments. (iii) A configuration management layer
providing a unified configuration programming interface to

manage and optimize the schedule of massive amount of
computational experiments. Such a layered design makes
computational robotics research more efficient and scalable.

The rest of the paper is organized as follows. Section II in-
troduces work related to cloud robotics and experiment man-
agement system. Section III illustrates EMS®architecture and
discusses some implementation detail. Section IV demon-
strates experimental results on the improved productivity,
reproducibility, and scalability of EMS®.

II. RELATED WORK

This section summarizes related work on experiment man-
agement system and cloud robotics system.

Experiment management system. An experiment man-
agement system [52] is a software stack that automates the
process of experimental job management, output harvesting,
data analysis, reporting, and publication of code and data.
Some general-purpose experiment management systems in-
clude ClsterJob [41], codalab [42], pywren [43], Kubernetes
batch [53], and AWS batch [54]. They facilitate researchers
to conduct million-CPU-hour experiments in a painless and
reproducible way. The most relevant works to this paper
are the machine-learning pipeline management systems [55].
Such systems fall into two categories: (i) machine learning
pipeline management service from a cloud provider, like
AWS sagemaker [44], Microsoft Azure ML [45], and GCP
MLops [46]. (ii) automatic installation packages on general
bare-metal servers, including Ray Job [48], Kubeflow [47],
TensorFlow Extended (TFX) [56], MLlib [49], MetaFLow
[57], and ScikitLearn [58]. Though significant progress has
been made, these systems are not designed for robotics
research which requires heterogeneous computational re-
sources. To bridge this gap, EMS® resorts to a sky-based
pipeline orchestration framework.

Cloud robotics system. A cloud robotics system uses
cloud resources to enable greater memory, computational
power, and interconnectivity for robotics applications. Early
works focus on facilitating the seamless integration of robot
and edge devices into both on-premises clusters and public
cloud services [59]–[63]. Specifically, DAvinCi [64] imple-
ments a software framework on the Hadoop cluster to scale
robotic development and RoboFlow [50] is a cloud-based
workflow management system orchestrating the pipelines on
Kubernetes cluster. FetchCore [65] and Formant [66] robotics
build web-based robot management systems, automating
monitoring and controlling robotics. To leverage the power
of public clouds, RoboEarth [67] and Rapyuta [68] propose a
system architecture, enabling robots to delegate their intense
computational tasks to the Amazon cloud service. FogRos
[69], [70] automates robotics deployment on public cloud
and SmartCloud [71] facilitates robot interactions with public
cloud services. Honda [72] proposes a serverless architecture
for service robot management systems on AWS and Robo-
maker [73] provides a cloud-based simulation service for
scaling robotic applications. Most of these systems focus on
robot deployment. In contrast, EMS® focuses on massive
experiment management.



III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

The EMS® architecture consists of thee abstraction layers:
(i) a computation management layer expressing sky-based
computation, (ii) a dependency management layer providing
sky-based pipeline orchestration, and (iii) a configuration
management layer enumerating experimental configurations.
Though EMS® is fully generic and applicable to any robotics
application, we describe the system using a turtlebot pipeline,
with the hope of making the system more accessible to
the audience. The pipeline consists of four tasks (training
collision avoidance policy using PPO, two testing, and de-
ployment on a real robot).

EMS® uses sky computing for pipeline orchestration. In
particular, it exploits an intercloud broker to optimally medi-
ate multi-cloud computing by abstracting away the deploy-
ment details of the underlying clouds. This is different from
the two related types of multi-cloud solutions. One is parti-
tioned multi-cloud enabling different corporate teams to run
their workloads on different clouds or on-premise clusters.
The other is portable multi-cloud enabling the same applica-
tion to run on multiple clouds. Examples include many third-
party cloud applications (e.g. Confluent [74], Databricks
[75], Snowflake [76], Trifacta [77] ), uniform low inter-
face across multiple clouds (e.g. Kubernetes [78], Google
Anthos [79], Azure ARC [80], AWS Outposts [81]), and
previous sky computing providing uniform infrastructure-
as-a-service for applications [82], [83]. In contrast to these
works, sky computing provides a set of uniform high-level
APIs for different cloud services so that users can split
the experiment pipelines across different clouds. In addition,
the intercloud broker enables selecting different clouds for
job execution while optimizing customized metrics (such
as price or performance). To conduct sky-based pipeline
orchestration, EMS® implements an intercloud broker in the
computation abstraction layer as described in Section III-A.

A. Computation Management Layer

The computation layer features an intercloud broker that
hides all the implementation details of the multi-cloud com-
putation. As shown in Figure 3, the input of the intercloud
broker is a set of computational jobs. It parses the job list
and submits the jobs to cloud services (e.g. AWS batch) or
cluster services (e.g. Kubernetes, Ray Cluster) for execution.
After job submission, it monitors the job output and provides
execution feedback to the parent process. We describe each
job as a Python dataclass object whose attributes include
job name, job resource demand like CPU number, GPU
number, memory size, and job executed commands, target
cloud name. In the turtlebot pipeline, the computation layer
can schedule jobs of training collision avoidance policy on
aws cloud or a private kubernetes cluster. This provides
massive computation to the pipeline.

The intercloud broker consists of the following compo-
nents (1) Job APIs: Job APIs provide a set of unified
interfaces for developers to submit jobs to clouds, monitor
and log running jobs on clouds, and cancel submitted jobs on
clouds. Available APIs are shown in Table I. (2) Optimizer:

Fig. 3. The computation layer architecture. The intercloud broker
consists of the middle two panels. It creates an interface for jobs
and clouds. It takes job descriptions as input and executes jobs on
target clouds.

Given job descriptions, the optimizer generates optimal ex-
ecution plans including moving data to a different region
and selecting service providers. For example, if developers
specify a job on AWS batch, the optimizer determines AWS
batch instance types, numbers, and region (3) Cloud Service
Catalog: This catalog is a list of open service interfaces,
provided by cloud or cluster vendors. The service in this
catalog can be a third-party library like boto3 [84], or a
command line like Azure CLI. (4) Executor: The executor
creates required resources and executes commands on the re-
sources allocated by the optimizer. (5) Data Orchestration:
Data orchestration manages the data related to jobs, like code
folder, raw data, and generated model data. If computation
jobs are launched on the same region as the data, then it
mounts the data-related storage to the instance, executing
jobs. If they are in different regions, it copies the related
data to the job region before launching jobs. (6) Logger:
Loggers keep pulling jobs output from clouds. It provides
real-time job execution status for the parent process.

TABLE I. Description of job APIs.
Job APIs Description

submit job() Submit jobs to clouds. The resource requirement,
execution command lines, conda environment, and
related data storage are specified in the job.json.

status job() List jobs status on the clouds. Status can be submitted,
running, canceled, failed, or succeeded.

cancel job() Cancel jobs on the clouds.
watch job() Pull job output from clouds and print out the content.

B. Dependency Management Layer

Built upon the computation management layer, the depen-
dency management layer orchestrates task pipelines within
one experiment. The architecture is illustrated in Figure 4.
Specifically, this layer takes turtlebot pipeline description as
input, generates a version number and job description for
each task in the pipeline, and then submits the job description
in both sequential and parallel order.

Fig. 4. The dependency management layer, managing a turtlebot
pipeline. Rectangles represent tasks and trapezoids represent version
seed generated from the version controller.

To perform these functions, the dependency management
layer consists of four major components: (1) DAG Represen-
tation: We use a directed acyclic graph (DAG) to represent
the execution dependency between tasks. Each task in the



pipelines describes the computation requirement, source file
location, and dependency tasks. (2) Pipeline Orchestra-
tor: Given a DAG representation, the pipeline orchestrator
generates job descriptions for each task and determines the
execution order. It also detects the last modification time of
the related data files in each task. If the detected time is
later than the last task execution time, it submits the job
for execution, otherwise, it keeps the previous results. (3)
Version Controller: Version Controller tracks every pipeline
experiment metadata like code, data, timing information, and
pipeline results. It generates a version number for each task
in the pipeline, which changes if the pipeline name or task
name or task dependency changes. The version number is
used as a directory name, which is created for saving all
relevant information about the task.

C. Configuration Management Layer

Built upon the dependency management layer, the config-
uration management layer features a flexible programming
interface for users to specify the whole configuration space
for massive computational experiments. It specifies the set
of pipelines along with configurations, serving as the input
to the dependency management layer. It is also responsible
for harvesting the results from all the executed pipelines
for downstream analytics. To manage massive computational
experiments, we need to frequently modify and automatically
generate the configurations. We implement a configuration
manager to handle this task.

Fig. 5. The configuration management layer, managing a turtlebot
pipeline. Given pipeline representation and search space of config-
urations, the algorithm module suggests configurations to pipelines,
and the analyzer module finds the configuration with the best metric.

As shown in Figure 5, the configuration layer consists of
three components. (i) The configuration component provides
a flexible programming interface for users to describe the
search space. Like hyperparameters of models (batch size
or learning rate). Given configuration space and pipeline,
algorithm, and analyzer component together automates the
process of running pipelines. (ii) The algorithm component
generates and schedules configurations for pipelines accord-
ing to the given search space. (iii) The analyzer component
aims at finding the best configurations for the pipelines.

D. System Implementation

The implementation of the computation layer, the depen-
dency management layer, and the configuration management
layer comprises 92% in Python, 5% in Rust, and 3% in
Shell scripts. Specifically, the computation layer abstracts
three clouds, including AWS batch service, Ray Cluster
service, and Kubernetes Cluster Service. We set up Ray
Cluster and Kubernetes Cluster on two on-premise clusters
and connect them with real robots. To access cloud service
and cluster service, we use AWS Boto3 library, Kubernetes

command lines, and Ray Job/Core APIs. For transferring data
between different clouds, we use network filesystems like
AWS EFS and SSHFS to mount data from different clouds.
Then, for the dependency management layer, we exploit
Python Hashlib to manage tasks in pipelines. To perform
scalable configuration searching, we exploit Ray library to
run, monitor, and analyze pipelines.

IV. EXPERIMENTAL RESULTS

We exploit EMS® to develop an offline reinforcement
learning(RL) pipeline for training mobile robot navigation
policy and demonstrate its productivity, scalability, and
reproducibility. Also, we develop three realistic robotics
applications to demonstrate that EMS® is applicable to
numerous intelligent robots. In particular, we aim to answer
the following questions: (1) How well does EMS® improve
productivity and scalability upon an evaluation baseline? (2)
What advantages do the computation layer, dependency man-
agement layer, and configuration management layer provide
for EMS®? (3) Is it difficult to connect EMS® ’s applicability
to robotics?

A. Experiment Setting

We train a decision transformer [85] based robot agent
in the Four Rooms environment of Gym Minigrid [86],
where the agent navigates in a maze composed of four rooms
interconnected by four gaps in the walls. We implement the
problem using a four-task pipeline. Firstly, a data acquisition
task that applies PPO [87] to interact with the Four Rooms
environment to collect data. Secondly, a data preprocessing
task which transforms collected data (represented by state,
action, reward) into a trajectory representation. Thirdly,
a model training task that trains a decision transformer
model using one hyperparameter set (experiment seed, head
number, and embedding size) of the transformer model.
Fourthly, an evaluation task that evaluates the trained model
in the Four Rooms environments over 100 goals and reports
accumulated rewards of the model in each goal. More details
are referred to in the original paper [85]. We implement
EMS® on four cloud computing environments: the AWS
Batch computing, a Kubernetes cluster, a Ray cluster, and
a robot cluster. To make consistent benchmarks, we deploy
all these environments on the AWS EC2 p3.8xlarge (Ubuntu
20.04) instances1. To simulate a multi-cloud setting, we
deploy the four computing clusters in four different AWS
VPCs and connect them through AWS site-to-site VPN.

B. Overall Performance

We run a robotics daily routine pipeline on three systems
(Naive, Single-cloud EMS, EMSR) and compare their pro-
ductivity, scalability, and reproducibility. Specifically, Naive
runs decision transformer’s original code from [85] on one
AWS EC2 p3.8xlarge instance. Single cloud-EMS runs the
robotic pipeline in the subsectionIV-A using EMS® but only
enabling AWS batch computing. EMSR is the full-fledged
implementation of EMS®. We use these systems to run

1We also use the same instance for AWS Batch job submission



16 pipelines at the beginning of every hour from 1:00 pm
to 10:00 pm. Each pipeline conducts model training with
different hyperparameters (experiment seed, head number,
and embedding size) using 1 GPU, and reports the averaged
time duration, money cost, and evaluation reward of pipelines
every hour. In addition, we use three systems to repeatedly
run the pipeline at 2:00 pm multiple times (8, 16, 24, 32)
within one hour and report the averaged time duration and
money cost, evaluation reward of pipelines.

We collect 3 evaluation metrics: (i) We measure pro-
ductivity by total output and total input where total input
is the averaged money cost and duration time of running
pipelines, and total output is averaged evaluation reward
of running pipelines. Given the same total output, less
total input means more productivity. (ii) We measure scala-
bility by money cost and duration time of different pipeline
frequency, which is the total number of pipeline runs within
one hour. (iii) We measure reproducibility by the evaluation
reward of running pipelines. Moreover, the money cost
on simulated on-premise devices is considered free and not
counted towards instance hours2.

Fig. 6. Productivity of EMS® in a robotics daily routine pipeline.
We run the pipeline every 1 hour from 1:00 pm to 10:00 pm and
report the pipeline duration in (a), the cost in (b), and evaluation
rewards in (c). The blue line and bar represent EMS®, implemented
on an on-premise cluster and AWS batch service. The green line
and bar represent single-cloud EMS, implemented by EMS® only
enabling AWS batch service. The orange line and bar represent the
naive pipeline, implemented on one EC2 instance. As expected,
EMS® requires less time and cost than the other methods.

Fig. 7. Scalibility and reproducibility of EMS® in a robotics daily
routine pipeline. We run different number of pipelines every hour
and report averaged duration in (a), averaged cost in (b), averaged
evaluation rewards in (c). The blue line and bar represents EMS®,
implemented on an on-premise cluster and AWS batch service. The
green line and bar represents single-cloud EMS, implemented on
EMS® only enabling AWS batch service. As expected, EMS® re-
quires less time and cost for running the same number of pipelines
than the others. Also, EMS® reproduces the model performance by
running the pipeline multiple times.

We reports producitivity in Figure 6, and reports scali-
bility and reproducibility in Figure 7. We highlight three
key findings: (1) EMS® improves the productivity of naive
approach and single cloud-based system due to its sky-based
architecture. Single-cloud EMS’s cost is lower than Naive

2In reality, there is a tiny cost on maintaining the on-premise cluster,
but this detail does not change the main conclusion drawn from these
experiments.

since its version controller in the dependency manage layer
enables reducing duration by recycling the data preprocess-
ing (2) EMS® has the highest scalability due to its sky-based
computation layer optimizes the cost by scheduling pipeline
on an on-premise device (3) EMS® reproduces the pipeline
results with different number of pipeline runs.

C. Performance Gain from Each of the Abstraction Layers

Computation layer. A key benefit of the sky-based
computation layer is to allow EMS® to scale jobs while
maintaining low time duration and money cost. In Figure
8a and Figure 8b, we evaluate this ability on parallel work-
loads of empty jobs, where each job requests 1 CPU hour.
Compared with 3 existing job management systems (AWS-
Batch, Kubernetes-Batch, Ray-Job), we observe that the total
time duration of EMS® near-perfectly stays the same when
the total number of jobs increases. This is due to the sky-
based computation leveraging public computing for parallel-
jobs scheduling. Since Kubernetes-batch and Ray-job are
deployed on an EC2 instance with only 96 CPU cores to
schedule the job, the time increases linearly with respect to
the number of jobs. In Figure 8b, we observe that the instance
hours of the computation layer are lower than the others. This
is due to the sophisticated data orchestrator reducing the time
of resource transfer.

Fig. 8. Scalability of computation layer in EMS®. We report total
time duration in (a) and total instance hours of jobs in (b) with
increasing job numbers. We also report single job time duration
with increasing data size of jobs in (c). The blue line represents
the computation layer, the red line represents the AWS Batch
computing, the purple line represents the Kubernetes Batch job and
the brown line represents Ray Job. The computing environment of
Kubernetes Batch job and Ray Job is set up with mounted data
volumes.

Another benefit of the computation layer is the ability to
scale the dataset size of a job while maintaining a low time
duration. In Figure 8c, we see that EMS®’s job duration
almost stays the same even dataset size of the job increases.
Compared to Ray-job, it outperforms in two magnitudes of
order. The data orchestrator utilizes a networked file system
to mount the source file to the jobs and this reduces the total
data transfer time.

Dependency management layer. To evaluate the perfor-
mance of the dependency layer, we track the data prepro-
cessing time of the pipeline experiment from Section IV-B
and compare it with Naive. In Figure 10a, we observe that
the time of EMS® stays almost the same with the dataset size
increases while Naive increases linearly. This is because the
version controller of EMS® tracks preprocessed results from
the previous pipeline runs and the new pipeline only spends
time on the newly arrived data from the data collection task.

Also, the dependency management layer brings EMS® the
ability to schedule sky-based pipeline as demonstrated in



Fig. 9. Statics of three case studies - bipedal walking, motion planning of a 7-dof robot arm, and collision avoidance of turtlebot. In (a),
we report the average score of pipelines under different configurations (4,16,64). The score of bipedal and turtlebot is normalized reward
and the score of the robot arm is normalized path cost. We also report the number of code lines for adapting naive implementation into
EMS® and the time duration in hours of 64 pipeline execution.

Fig. 10. Performance of the pipeline management layer in EMS®. In
(a), we report the data preprocessing duration of pipelines running
on different time frames. In (b), we also report the evaluation
score and deployment score of the trained models in pipelines. (c)
illustrates the experiment setting of (b), where the evaluation cloud
and deployment cloud is different. From left to right in (d), they
are Four Rooms, Door Keys, Simple Crossing and Lava Crossing,
Dynamics Obstacle Avoidance.

Figure 10b, allowing us to evaluate models on one cloud
(VPC1) and deploy the models on another cloud (VPC2).

Configuration management layer. The configuration
management layer is important for hyperparameter search
in many data-driven workloads.We run the same pipeline in
Section IV-B for five different tasks, as shown in Figure
10d. Specifically, for each task, we search configuration
among 1, 8, 16, 32, and 64 sets of hyperparameters, which
are head number, layer number, embedding size, activation
functions, batch size, and experiment seeds for the decision
transformer model. For each set, we report the best model
evaluation reward among the hyperparameters. We report the
average evaluation reward and variance of the performance
on 100 goals in Table II and observe that a larger amount of
hyperparameters delivers better-performed models.
TABLE II. Best evaluation score of decision transformer models in

different hyperparameter number.
Number Four Rooms Door Keys Simple Crossing Lava Crossing Dynamic Obstacles

1 0.460± 0.03 0.892± 0.08 0.789± 0.28 0.798± 0.01 0.654± 0.11
8 0.481± 0.05 0.934± 0.05 0.820± 0.12 0.855± 0.02 0.685± 0.09
16 0.520± 0.03 0.954± 0.07 0.824± 0.11 0.909± 0.03 0.720± 0.12
32 0.523± 0.02 0.953± 0.08 0.850± 0.10 0.920± 0.03 0.719± 0.08
64 0.524± 0.03 0.960± 0.02 0.888± 0.12 0.920± 0.02 0.722± 0.10

D. Case Studies

We exploited EMS® to develop three data-driven robotics
applications. (i) Developing collision avoidance policy of

turtlebot robot. This pipeline consists of training collision
avoidance policy in Stage simulation [88] with PPO, testing
in stage, and deployment on a real robot [89]. (ii) Developing
motion planning policy of a 7-dof robot arm in OpenRave
simulation. This pipeline consists of collecting datasets in
OpenRave [90] with BIT* [91], training NEXT [92] motion
plan policy, and testing in simulation. (iii) Developing a
bipedal walking policy. We model Flame robot [93], [94]
in pybullet [95], train walking policy using PPO, and testing
policy in pybullet. The details of these implementation are
referred to in paper [26], [91], [96], [97]. Specifically, the
naive implementation of these applications can only leverage
computation on a AWS EC2 instance of p3.8xlarge and
EMS® integration can leverage AWS batch computation to
run pipelines. Each running pipeline of them has one con-
figuration and requires resource of one p3.8xlarge instance.

In the experiment, we run 4,16,64 pipelines with different
configurations(seed, batch size. and learning rate) and report
average score, total execution time and code line number in
Figure 9. As shown in subfigure 9a, the average score is
higher with more configuration of pipelines, which justifies
the importance of massive computation in EMS®. Also,
subfigure 9b shows that adapting existing robotic applications
EMS® only requires a few of code lines, which implies
that EMS® is applicable to numerous intelligent robotics
applications. Then we compare the time cost of EMS® with
naive implementation and demonstrate the less time cost of
EMS® than the naive with the same pipeline workloads.

V. CONCLUSION

We propose EMS®, a cloud-enabled massive computa-
tional experiment management system supporting massive
data-driven robotic routine experiments. By exploiting it
to develop an offline reinforcement learning pipeline for
mobile robot navigation, we demonstrate the scalability,
reproducibility, and productivity of EMS®. Then, we show
that EMS® is applicable to numerous data-driven robotics
applications, through three realistic robot examples. Future
works will consider developing more sophisticated methods
to optimize the cost of computation scheduling and integrate
EMS®with a robotic deployment system in a continuous
integration and continuous delivery (CI/CD) fashion.



REFERENCES

[1] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[3] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[4] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma,
T. Pailevanian, S.-K. Kim, K. Otsu, J. Burdick et al., “Autonomous
spot: Long-range autonomous exploration of extreme environments
with legged locomotion,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2518–
2525.

[5] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Real-time trajectory adaptation for quadrupedal locomotion using
deep reinforcement learning,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 5973–5979.

[6] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3699–3706, 2020.

[7] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne,
Y. Tassa, T. Erez, Z. Wang, S. Eslami et al., “Emergence of locomotion
behaviours in rich environments,” arXiv preprint arXiv:1707.02286,
2017.

[8] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[9] Z. Xie, X. Da, M. van de Panne, B. Babich, and A. Garg, “Dynamics
randomization revisited: A case study for quadrupedal locomotion,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 4955–4961.

[10] O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar, “Multi-
agent manipulation via locomotion using hierarchical sim2real,” arXiv
preprint arXiv:1908.05224, 2019.

[11] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

[12] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[13] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in 2016 IEEE international
conference on robotics and automation (ICRA). IEEE, 2016, pp.
3406–3413.

[14] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0:
A cloud-based network of 3d objects for robust grasp planning using
a multi-armed bandit model with correlated rewards,” in 2016 IEEE
international conference on robotics and automation (ICRA). IEEE,
2016, pp. 1957–1964.

[15] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot
Learning. PMLR, 2020, pp. 1101–1112.

[16] E. Stengel-Eskin, A. Hundt, Z. He, A. Murali, N. Gopalan, M. Gom-
bolay, and G. Hager, “Guiding multi-step rearrangement tasks with
natural language instructions,” in Conference on Robot Learning.
PMLR, 2022, pp. 1486–1501.

[17] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, J. Sivic, and
C. Schmid, “Learning to combine primitive skills: A step towards ver-
satile robotic manipulation,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 4637–4643.

[18] A. X. Lee, S. Levine, and P. Abbeel, “Learning visual servoing with
deep features and fitted q-iteration,” arXiv preprint arXiv:1703.11000,
2017.

[19] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke,
“Training deep neural networks for visual servoing,” in 2018 IEEE

international conference on robotics and automation (ICRA). IEEE,
2018, pp. 3307–3314.

[20] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs,
A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral
cloning,” in Conference on Robot Learning. PMLR, 2022, pp. 158–
168.

[21] O. Mees and W. Burgard, “Language-conditioned policy learning for
long-horizon robot manipulation tasks.”

[22] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
supervised deep reinforcement learning with generalized computation
graphs for robot navigation,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 5129–5136.

[23] B. Shacklett, E. Wijmans, A. Petrenko, M. Savva, D. Batra, V. Koltun,
and K. Fatahalian, “Large batch simulation for deep reinforcement
learning,” arXiv preprint arXiv:2103.07013, 2021.

[24] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain,
S. Omari, V. Iglovikov, and P. Ondruska, “One thousand and
one hours: Self-driving motion prediction dataset,” arXiv preprint
arXiv:2006.14480, 2020.

[25] H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, and M. Ar-
dani, “Deep reinforcement learning for real autonomous mobile robot
navigation in indoor environments,” arXiv preprint arXiv:2005.13857,
2020.

[26] G. Ye, Q. Lin, T.-H. Juang, and H. Liu, “Collision-free navigation
of human-centered robots via markov games,” in 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2020,
pp. 11 338–11 344.

[27] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese, “Scene memory
transformer for embodied agents in long-horizon tasks,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 538–547.

[28] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topolog-
ical memory for navigation,” arXiv preprint arXiv:1803.00653, 2018.

[29] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cog-
nitive mapping and planning for visual navigation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 2616–2625.

[30] Y. Lyu, Y. Shi, and X. Zhang, “Improving target-driven visual navi-
gation with attention on 3d spatial relationships,” Neural Processing
Letters, pp. 1–20, 2022.

[31] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, no. 4, pp. 681–694,
2020.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[33] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[34] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[35] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[36] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[38] A. Team, “Alphastar: mastering the real-time strategy game starcraft
ii,” DeepMind blog, vol. 24, 2019.

[39] M. Mathieu, S. Ozair, S. Srinivasan, C. Gulcehre, S. Zhang, R. Jiang,
T. Le Paine, K. Zolna, R. Powell, J. Schrittwieser et al., “Starcraft ii
unplugged: Large scale offline reinforcement learning,” in Deep RL
Workshop NeurIPS 2021, 2021.

[40] D. Jiang, E. Ekwedike, and H. Liu, “Feedback-based tree search
for reinforcement learning,” in International conference on machine
learning. PMLR, 2018, pp. 2284–2293.

[41] H. Monajemi, D. L. Donoho, and V. Stodden, “Making massive
computational experiments painless,” in 2016 IEEE International
Conference on Big Data (Big Data). IEEE, 2016, pp. 2368–2373.

[42] “Codalab worksheets,” worksheets.codalab.org.
[43] “Pywren,” pywren.io.

worksheets.codalab.org
pywren.io


[44] A. V. Joshi, “Amazon’s machine learning toolkit: Sagemaker,” in
Machine Learning and Artificial Intelligence. Springer, 2020, pp.
233–243.

[45] ——, “Azure machine learning,” in Machine Learning and Artificial
Intelligence. Springer, 2020, pp. 207–220.

[46] E. Bisong, “An overview of google cloud platform services,” Building
Machine Learning and Deep Learning Models on Google Cloud
Platform, pp. 7–10, 2019.

[47] ——, “Kubeflow and kubeflow pipelines,” in Building Machine Learn-
ing and Deep Learning Models on Google Cloud Platform. Springer,
2019, pp. 671–685.

[48] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 18),
2018, pp. 561–577.

[49] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine
learning in apache spark,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1235–1241, 2016.

[50] Q. Lin, G. Ye, J. Wang, and H. Liu, “Roboflow: a data-centric
workflow management system for developing ai-enhanced robots,” in
Conference on Robot Learning. PMLR, 2022, pp. 1789–1794.

[51] A. Richie-Halford and A. Rokem, “Cloudknot: A python library to run
your existing code on aws batch,” in Proceedings of the 17th python
in science conference, 2018, pp. 8–14.

[52] H. Monajemi, R. Murri, E. Jonas, P. Liang, V. Stodden, and D. L.
Donoho, “Ambitious data science can be painless,” arXiv preprint
arXiv:1901.08705, 2019.

[53] “K8s batch,” kubernetes.io/docs/concepts/workloads/controllers/job.
[54] “Aws batch,” https://aws.amazon.com/batch.
[55] D. Xin, H. Miao, A. Parameswaran, and N. Polyzotis, “Production

machine learning pipelines: Empirical analysis and optimization op-
portunities,” in Proceedings of the 2021 International Conference on
Management of Data, 2021, pp. 2639–2652.

[56] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque,
S. Haykal, M. Ispir, V. Jain, L. Koc et al., “Tfx: A tensorflow-
based production-scale machine learning platform,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 1387–1395.

[57] C. Arisdakessian, S. B. Cleveland, and M. Belcaid, “Metaflow—
mics: Scalable and reproducible nextflow pipelines for the analysis
of microbiome marker data,” in Practice and Experience in Advanced
Research Computing, 2020, pp. 120–124.

[58] R. Garreta, G. Moncecchi, T. Hauck, and G. Hackeling, Scikit-learn:
machine learning simplified: implement scikit-learn into every step of
the data science pipeline. Packt Publishing Ltd, 2017.

[59] O. Saha and P. Dasgupta, “A comprehensive survey of recent trends in
cloud robotics architectures and applications,” Robotics, vol. 7, no. 3,
p. 47, 2018.

[60] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation
science and engineering, vol. 12, no. 2, pp. 398–409, 2015.

[61] K. Goldberg and B. Kehoe, “Cloud robotics and automation: A
survey of related work,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2013-5, 2013.

[62] S. Shakya et al., “Survey on cloud based robotics architecture
challenges and applications,” Journal of Ubiquitous Computing and
Communication Technologies (UCCT), vol. 2, no. 01, pp. 10–18, 2020.

[63] Y. Liu and Y. Xu, “Summary of cloud robot research,” in 2019
25th International Conference on Automation and Computing (ICAC).
IEEE, 2019, pp. 1–5.

[64] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.
Kong, A. S. Kumar, K. D. Meng, and G. W. Kit, “Davinci: A cloud
computing framework for service robots,” in 2010 IEEE international
conference on robotics and automation. IEEE, 2010, pp. 3084–3089.

[65] “Fetch robotics,” fetchrobotics.com.
[66] “Formant robotics,” formant.io.
[67] M. Waibel, M. Beetz, J. Civera, R. d’Andrea, J. Elfring, D. Galvez-

Lopez, K. Häussermann, R. Janssen, J. Montiel, A. Perzylo et al.,
“Roboearth,” IEEE Robotics & Automation Magazine, vol. 18, no. 2,
pp. 69–82, 2011.

[68] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’Andrea, “Rapyuta:
The roboearth cloud engine,” in 2013 IEEE international conference
on robotics and automation. IEEE, 2013, pp. 438–444.

[69] Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk, J. Gonzalez, J. Kubi-
atowicz, K. Goldberg et al., “Fogros: An adaptive framework for au-
tomating fog robotics deployment,” arXiv preprint arXiv:2108.11355,
2021.

[70] J. Ichnowski, K. Chen, K. Dharmarajan, S. Adebola, M. Danielczuk,
V. Mayoral-Vilches, H. Zhan, D. Xu, R. Ghassemi, J. Kubiatowicz
et al., “Fogros 2: An adaptive and extensible platform for cloud and
fog robotics using ros 2,” arXiv preprint arXiv:2205.09778, 2022.

[71] J. M. Stauffer, “A smart and interactive edge-cloud big data system,”
Ph.D. dissertation, Purdue University Graduate School, 2022.

[72] K. Nishimiya and Y. Imai, “Serverless architecture for service robot
management system,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 11 379–11 385.

[73] “Aws robomaker,” aws.amazon.com/robomaker.
[74] “Confluent,” www.confluent.io.
[75] R. Ilijason, “Getting started with databricks,” in Beginning Apache

Spark Using Azure Databricks. Springer, 2020, pp. 27–38.
[76] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,

J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang et al.,
“The snowflake elastic data warehouse,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 215–226.

[77] “Trifacta,” www.trifacta.com.
[78] G. Sayfan, Mastering kubernetes. Packt Publishing Ltd, 2017.
[79] “Google anthos,” cloud.google.com/anthos.
[80] “Azure arc,” azure.microsoft.com/services/azure-arc.
[81] “Aws outposts,” aws.amazon.com/outposts.
[82] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky comput-

ing,” IEEE Internet Computing, vol. 13, no. 5, pp. 43–51, 2009.
[83] A. Monteiro, C. Teixeira, and J. S. Pinto, “Sky computing: Exploring

the aggregated cloud resources—part ii,” in 2014 9th Iberian Confer-
ence on Information Systems and Technologies (CISTI). IEEE, 2014,
pp. 1–6.

[84] M. Garnaat, “boto documentation,” 2018.
[85] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,

P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” Advances in neural
information processing systems, vol. 34, 2021.

[86] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic grid-
world environment for openai gym,” https://github.com/maximecb/
gym-minigrid, 2018.

[87] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[88] R. Vaughan, “Massively multi-robot simulation in stage,” Swarm
intelligence, vol. 2, no. 2, pp. 189–208, 2008.

[89] R. Amsters and P. Slaets, “Turtlebot 3 as a robotics education
platform,” in International Conference on Robotics in Education (RiE).
Springer, 2019, pp. 170–181.

[90] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” 2010.

[91] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed
trees (bit*): Informed asymptotically optimal anytime search,” The
International Journal of Robotics Research, vol. 39, no. 5, pp. 543–
567, 2020.

[92] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song, “Learning
to plan in high dimensions via neural exploration-exploitation trees,”
arXiv preprint arXiv:1903.00070, 2019.

[93] J. H. Solomon, M. A. Locascio, and M. J. Hartmann, “Linear reactive
control for efficient 2d and 3d bipedal walking over rough terrain,”
Adaptive Behavior, vol. 21, no. 1, pp. 29–46, 2013.

[94] D. Hobbelen, T. De Boer, and M. Wisse, “System overview of bipedal
robots flame and tulip: Tailor-made for limit cycle walking,” in 2008
IEEE/RSJ international conference on intelligent robots and systems.
IEEE, 2008, pp. 2486–2491.

[95] C. Erwin and B. Yunfei, “Pybullet a python module for physics
simulation for games,” PyBullet, 2016.

[96] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 6252–6259.

[97] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez,
K. Goldberg, and I. Stoica, “Ray rllib: A composable and scalable rein-
forcement learning library,” arXiv preprint arXiv:1712.09381, vol. 85,
2017.

kubernetes.io/docs/concepts/workloads/controllers/job
https://aws.amazon.com/batch
fetchrobotics.com
formant.io
aws.amazon.com/robomaker
www.confluent.io
www.trifacta.com
cloud.google.com/anthos
azure.microsoft.com/services/azure-arc
aws.amazon.com/outposts
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

	INTRODUCTION
	Related Work
	System Architecture and Implementation
	Computation Management Layer
	Dependency Management Layer
	Configuration Management Layer
	System Implementation

	Experimental Results
	Experiment Setting
	Overall Performance
	Performance Gain from Each of the Abstraction Layers
	Case Studies

	Conclusion
	References

