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Abstract— We exploit Markov games as a framework for
collision-free navigation of human-centered robots. Unlike the
classical methods which formulate robot navigation as a single-
agent Markov decision process with a static environment, our
framework of Markov games adopts a multi-agent formula-
tion with one primary agent representing the robot and the
remaining auxiliary agents form a dynamic or even competing
environment. Such a framework allows us to develop a path-
following type adversarial training strategy to learn a robust
decentralized collision avoidance policy. Through thorough
experiments on both simulated and real-world mobile robots,
we show that the learnt policy outperforms the state-of-the-art
algorithms in both sample complexity and runtime robustness.

Index Terms— Collision-free navigation, human-centered
robotics, deep reinforcement learning, multi-agent system, ad-
versarial training

I. INTRODUCTION
This paper studies the collision-free navigation problem of

human-centered robots [1], [2]. Such robots need to interact,
assist and cooperate with humans. One motivating example is
grocery robots as shown in Figure 1, from which we see such
robots must operate in a dynamic environment due to humans
activities. Collision-free navigation [3]–[9] is a fundamental
required capability of human-centered robots.

The dynamic environment of human-centered robots
brings difficulty for using traditional trajectory-based meth-
ods [10], [11] or reinforcement learning based methods
which assume a static map [7], [12]. More specifically, these
methods formulate the robot navigation problem as a single-
agent Markov decision process, then conduct either forward
path planning (random tree search algorithms) [13], [14]
or backward policy search (e.g., policy gradient algorithms)
[15]–[18] for collision-free navigation. They all assume the
robot operating in a static environment, which is unrealistic
for human-centered robots.

To handle this challenge, we exploit Markov games [19]–
[22] as a modeling framework for collision-free navigation.
Unlike traditional trajectory-based methods or reinforcement
learning based methods, our framework of Markov games
adopts a multi-agent formulation with one primary agent rep-
resenting the robot and the remaining auxiliary agents form
a dynamic or even competing environment. This framework
allows us to develop an adversarial training strategy to learn
a robust decentralized collision avoidance policy.

Under the multi-agent formulation [23]–[27], the primary
agent representing robot is called a protagonist. Our method
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Fig. 1: A grocery robot navigating in a retail scenario. Such robots
must operate in a dynamic environment due to humans activities.
Picture source: https://vosizneias.com/.

spawn several auxiliary agents who attack the protagonist
in an adversarial way. These adversary agents get reward
by resulting in protagonist not reaching the goal. A major
contribution of this paper is the development of a novel path-
following policy learning strategy for solving the Markov
games. More specifically, all agents are modeled by a
Markov process but we allow the auxiliary agents to have
a global view of the system state while the primary agent
(the robot) only have a local view. The Markov processes
of the auxiliary agents are centrally configurable and are
parameterized by a set of aggressiveness parameters (e.g.,
moving velocity, perception accuracy, etc.) that affect their
capabilities being adversarial. By varying the aggressiveness
parameters from tight to more relaxed (i.e., the auxiliary
agents become more and more adversarial), the obtained
parametric family of Markov decision processes form a
regularization path that can be used to robustly train the
primary agent’s navigation policy using a path-following
algorithm (More details are provided in Section III). The
same idea has also been exploited in developing the interior
point method [28] in nonlinear optimization and parametric
simplex method in linear optimization [29].

We conduct thorough numerical simulations to demon-
strate the efficacy of the proposed method. We show that the
learnt policy is simultaneously efficient in sample complex-
ity and adaptive to complex human-centered environment.
We also conduct a sensitivity analysis to demonstrate the
robustness of the proposed algorithm. In addition, we deploy
the learnt policy on a real mobile robot equipped with only
one low cost 2D LIDAR and show that the trained agent is
directly deployable to complex environment.
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II. RELATED WORK

This section summarizes some related work. Relevant liter-
ature includes Multi-agent collision-free navigation, Markov
games formulation of mobile robots and adversarial learning.

A. Multi-Agent Collision-free Navigation

There are two collision-free navigation paradigms in multi-
agent environments: the centralized approach vs decentral-
ized approach. The centralized approach [30], [31] assumes
each agent has perfect knowledge of the other agents, which
is unrealistic for human-centered robots since the primary
agent (the robot) obvious can not know the perfect state of
every auxiliary agent (humans). In contrast, the decentralized
approach assumes the primary agent only has partial observa-
tion of the rest. Thus is more relevant to our setting. Related
works on decentralized collision-free navigation methods
include [32] and [17]. However, [32] only considers auxiliary
agents with stochastic or prefixed policies while [17] assumes
the primary and auxiliary agents share the same policy. In
contrast, our method models the auxiliary agents using an
adversarial setting which improves both sample complexity
and policy robustness of the primary agent.

B. Markov Games Formulation of Multi-agent Systems

Markov games are powerful at modeling multi-agent
systems [25], [26]. However, solving their equilibrium is
nontrivial. To achieve tractable solution, one approach is to
constrain the problem into a two-agent zero-sum game to
learn a stationary policy for both protagonist and adversary
[33]. Another approach is to exploit centralized actor-critic
type methods [34]. A third approach is to constrain all
the agents can only communicate with their neighbors in
a network setting [35]. None of these methods is readily
applicable to our setting where the protagonist (the robot) is
decentralized while the remaining agents are centralized.

C. Adversarial Learning

Motivated by the success of generative adversarial net-
works [36], recent works show that training an agent in an
adversarial setting could lead to improved performance. For
example, in game environments, Trapit et al. [37] and Adam
et al. [38] applied 2 competeting agents (one protagonist and
one opponent) in the training process and obtained superior
performance compared to the vanilla reinforcement learning
methods. For driving games, [39] showed that the protagonist
works better in the presence of a risk-seeking opponent. All
these works exploit two-player zero-sum games. In contrast,
we employ multi-agent general-sum Markov games which
are more challenging to solve and motivate the development
of a new path-following adversarial training strategy (More
details are provided in Section III).

III. METHODS

In this section, we formulate the collision-free navigation
problem as a Markov game and describe a path-following
type strategy for solving it. Though our algorithmic frame-
work is fully generic and applicable to any human-centered

robot, we describe the algorithm using a simple 2D Stage
simulation environment [40] with the hope of making the
main idea more concrete to accessible to the audience. All
the agents in this simulator exploits a 2D LIDAR with laser
scan range 3.5m as sensing device. The maximum linear
speed of the mobile robot in this simulator is 1m/s.

A. Collision-free Navigation Formulated as Markov Games

A human-centered robot needs to navigate in an environ-
ment with the interference of one or more moving humans.
This scenario can be modeled as a multi-agent system with
the robot as the primary agent (protagonist) and the humans
as auxiliary agents (adversaries). Each agent is modeled by a
Markov decision process. We allow the adversaries to access
the global state information of all other agents while the
protagonist to access only local information of its nearby
agents. Each agent aims at maximizing its accumulative
reward under its own reward mechanism. These co-evolving
and competitive agents thus form a Markov game [41]:

M = (S,O1 . . . ON , A1 . . . AN , T,R1 . . . RN ).

Here N is the total number of agents with Agent 1
as the protagonist. S denotes the states of all agents.
O1 . . . ON , A1 . . . AN are the sets observations and actions
for each agent. Ai is action of Agent i sampled from a
stochastic policy πi and the next state is generated by the
state transition function T : S × A1 × . . . × AN → S. At
each step, every agent gets a reward according to the state
and corresponding action ri : S × Ai × . . . × AN → R
along with an observation of the system state oi : S → O.
While the adversarial agents 2, . . . , N have access to the
global information S, the protagonist only have access to
partial information oi (More details are provided in Section
IV). The objective for the i-th agent is to learn a policy that
maximizes the cumulative discounted rewards

R(i) := E
[ T∑

t=0

γtr
(t)
i )

]
, (1)

where γ ∈ (0, 1) is the discount factor and r
(t)
i is the the

reward received at the t-th step.

B. Path-following Policy Learning Strategy

The cumulative discounted reward of the protagonist R(1)
and those of the adversaries R(2),R(3) . . . ,R(N) are cou-
pled since these adversary agents get reward by resulting in
protagonist not reaching the goal. This forms a general-sum
Markov game and it is nontrivial to solve its equilibrium.
To proceed, we propose a path-following policy learning
strategy. The main idea is to parameterize all the auxiliary
agents by a set of aggressiveness parameters that affect their
capabilities being adversarial. By varying the aggressiveness
parameters from tight to more relaxed, the auxiliary agents
become more and more adversarial. In another word, the
environment of the protagonist shifts from being stochastic to
more adversarial. The obtained parametric family of Markov
decision processes form a regularization path that can be
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used to robustly train the primary agent’s navigation policy
using a path-following strategy.

More specifically, we consider the following set of ag-
gressiveness parametrized of the auxiliary agents: (i) Lin-
ear velocity: The mobile robot contains linear and angular
speed v`, vω , the latter does not have notable influence
to adversaries’ ability. Hence, we only consider the linear
velocity in the range v` ∈ [0, 1.5]. (ii) Adversarial size:
We model the shape of each auxiliary agent by a square
with width s ∈ [0.1, 0.4]. The larger size brings difficulty
for the protagonist to conduct collision avoidance. (iii)
Perception accuracy: Each adversarial agent can access the
positions of other agents with an additive Gaussian noise
with spheirical covariance matrix N(0, 1/ρ2I). Here we set
ρ2 ∈ [0.2, 1000]. We parameterize the above agressiveness
parameters using a one-dimensional parameter τ ∈ [0, 1] to
be monotone increasing functions v`(τ), s(τ) and σ(τ) such
that v`(0) = 0, v`(1) = 1.5; s(0) = 0.1, s(1) = 0.4; ρ2(0) =
0.2, ρ2(1) = 1000. Once the functions v`(·), s(·), ρ2(·) are
fixed, the adversarial capabilities of the adversarial agents are
indexed by the parameter τ . Our path-follwing strategy is to
train the policy of the protagonist along the regularizaiton
path by varying τ from 0 to 1. For simplicity, we set the
functions v`(·), s(·), ρ2(·) to be linear in this paper. More
sophisticated parameterization paradigms are also possible.

To train the protagonist’s poicy along the path, we conduct
reinforcement learning of the protagonist in an environment
with adversaries of minimum difficulty τ = 0. We then
increase the aggressiveness level of the adversary agents to a
higher level according to some pre-defined updating rule and
use the learnt policy from the previous step for initialization.
The process keeps going until reaching the hardest setting
corresponding to τ = 1 as Algorithm 1 shows.

Algorithm 1: Path-following Policy Learning
Require: Transition model T of the Markov game.

1: Initialize τ = 0; The policy π1, . . . , πN of each agent;
Maximum number of episodes E.

2: for episode =1, . . . , E do
for m steps do

Each agent selects action ai ∼ πi(oi).
Step forward s′, r ← T (s, a1, . . . , aN ).
Each agent collects trajectory (s, s′, a, r).
Update πi using collected data

Update τ using certain updating rule.
3: Return π∗1

The above path-follwoing algorithm requires an updating
rule of the parameter τ . We consider 3 updating methods: (i)
discrete, (ii) sigmoid and (iii) linear. Let E be the number of
maximum episodes and i be the episode index. The discrete
rule generates a path with only 3 values of τ = 0, 0.5, 1, the
sigmoid rule generates a path by varying τ along a sigmoid-
shaped curve 1/(1+ e−(i−E/2)). The linear rule generates a
path by varying τ along a linear line from 0 to 1.

Fig. 2: Network Architecture of Protagonist and Adversary. Conv
represents convolution layer followed by its dimension and kernel
size. Dense represents fully-connected layer with its dimension.

C. Protagonist Setting

To train the protagonist, we use the same PPO algorithm
[42] as described in [17] with some minor adaptions (e.g., the
input dimension of the LIDAR has different dimensions). For
the purpose of completeness, we briefly describe the setups
in this section to ease the audience.

1) Observation Space and Action Space: The observa-
tions of the protagonist contain laser readings o` ∈ R3×360

(Representing data from the 3 most recent frames of the
LIDAR scan, each of which is a 360-dimensional vector),
current velocity ov ∈ R2 including both linear and angular
velocities and the target location’s relative polar coordinates
og ∈ R2 with respect to the agent’s local coordinate system.
Note that each value of the laser reading o` lies in between
0 to 3.5 which is the range of laser beam.

2) Reward Setting: To navigate the agent, the reward
function is the sum of 4 components:

r(t)(s(t), a(t)) = r
(t)
d + r(t)g + r(t)c + r(t)w .

Here r
(t)
d = wd · (‖p(t−1)

1 − pg‖2 − ‖p
(t)
1 − pg‖2) guides

the agent to move towards the goal. p1 = [px
1 ,p

y
1] ∈ R2

and p(t)
g = [px

g ,py
g ] ∈ R2 are the current and goal positions

of the protagonist. We set the weight wd = 2.5. Reward
for reaching the goal r(t)g = 15 if ‖p(t)

1 − pg‖2 < 0.5. We
set r(t)c = −15 if a collision happens and similarly r

(t)
w =

wω · |ω(t)| if ω(t) > 1.05 with wω = −0.1 is used to force
the protagonist moving more smoothly.

3) Network Architecture: The network architecture is
shown in Figure 2. The LIDAR data is fed to two convolution
layers and one 256-dimensional fully-connected (fc) layer.
The processed laser information is then concatenated with
the other two observations og and ov . The concatenated
vector is fed into a 128-dimensional fully-connected layer to
generate the mean of the velocity vmean. We then construct
a Gaussian policy with vmean as the mean parameter and a
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(a) Chasing (b) Blocking (c) Crossing

Fig. 3: The 3 Adversarial Paradigms: Chasing, Blocking and Crossing. The blue cube represents the protagonist, the black ones represents
adversaries. The red circle denoting protagonist’s goal location. The trajectories of adversaries present different attacking strategies.

variance parameter vstd trained in the same way as in [17].
In addition to the policy network, the PPO algorithm also
involves a value network which is nearly the same except
the last fully-connected layer outputs a value for judging the
policy’s performance. More details can be found in [17].

D. Adversarial Setting

Unlike most multi-agent navigation methods which are
either fully centralized with all agents share the same pol-
icy [43] or fully decentralized with all agents only have
limited partial observations [17], [23], our setting have all
adversaries centralized but with different policies and the
protagonist decentralized. This allows us to fully harness the
benefit of adversarial learning to obtain a more robust policy
for the protagonist. Since all adversaries are centralized, each
one has an observation containing the position information
of all the agents: o(t)a = [p(t)

1 . . . p(t)
N ,p(t)

g ], where p(t)
i =

[px
i ,p

y
i ] ∈ R2 represents the current position of the i-

th agent. p(t)
g is the goal position of the protagonist. The

observation o(t) is fed into a neural network with the same
architecture as in Figure 2 but each adversary agent indepen-
dently trains the network parameters. Similarly, a Gaussian
policy is constructed for each adversary with the output
action a(t) = [vl, vw] ∈ R2 containing linear and angular
velocities. To further promote the diversity of the adversarial
agents, we consider 3 adversarial paradigms shown in Fig-
ure 3. These paradigms have different attacking strategies
characterized by different reward mechanisms. To train the
protagonist, we simultaneously launch multiple instances
of the adversarial agents under different paradigms. The
policy networks of the adversaries from the same paradigm
share the same parameters. The protagonist is simultaneously
trained in these instances using the path-following strategy.
We describe the 3 adversarial paradigms below.

1) Chasing: In this paradigm, 3 adversaries are chasing
the protagonist and are rewarded when catching it. The
reward function of adversaries is:

r(t)(s(t), a(t)) = r
(t)
d + r(t)c ,

where r(t)d = wd ·(‖p(t−1)
i −p1‖2−‖p

(t)
i −p1‖2) with wd =

2.5 and r(t)c = 15 if collision with protagonist happens. It is
easy to see that r(t)d encourages an adversary to chase the

protagonist and r
(t)
c encourages the collision. One thing to

note is that if two adversaries collide, there is no punishment
but will terminate the current episode and all the adversaries
will be relaunched at new random positions.

2) Blocking: This paradigm has 3 adversarial agents try-
ing to prevent the protagonist from reaching the goal position
with the following reward function:

r(t)(s(t), a(t)) = (r
(t)
d − r

(t)
d′ ) + r(t)c ,

where r(t)d , r
(t)
c are the same as in the chasing section and

r
(t)
d′ = wd · (‖p(t−1)

1 − pg‖2 − ‖p
(t)
1 − pg‖2) with wd = 2.5

encourages the protagonist to move towards the goal pg .
It is easy to see that the component r(t)d′ encourages the
adversaries to block the protagonist away from the goal.

3) Crossing: This paradigm is exactly the same as the
chasing paradigm except the goal position is purposely put
behind the 3 adversaries. The reason for designing this
paradigm is that crossing is the one of the most common
scenarios encountered by a human-centered robot. Many tra-
ditional approaches assume the humans follow social norms
or reciprocal policy and should actively avoid colliding robot.
However, in real applications, there could be some curious
huamans (e.g., a kid in the grocery store) who tend to get
close to the robot and that is the scenario we aim to model.

IV. EXPERIMENTS

We present experimental results to demonstrate the effi-
cacy of the proposed method. In particular, we show that our
method outperforms the existing state-of-the-art collision-
free navigation methods in both benign and adversarial
environments. We also deploy our learnt policy to a physical
robot and demonstrate that the trained agent is directly
applicable to real-world physical environment.

A. Computational Details

We conduct the multi-agent robots simulation in Stage
[40] with the algorithm implemented in PyTorch [44]. The
network architectures are the same as shown in Figure 2. The
maximum linear speed of the mobile robot during training is
1m/s and the 2D LIDAR equipped on the robot senses 360
degree and 0-3.5m distance. We train collision-free policy on
a server with 2 Xeon 8168 CPUs (48 cores), 1TB memory
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and 4 Nvidia GTX 2080 GPUs. The collision-free policy
training takes 4 hours (about 2000 episodes) to converge to
a robust solution in all adversarial paradigms.

B. Experimental Design

1) Evaluation Metrics: We consider the following metrics
adopted from [17]: (i) Success rate: The proportion of trials
that the protagonist successfully reaches the target position
without any collision. (ii) Extra time: The difference between
the average travel time of the protagonist over all testing
cases and the lower bound of the travel time measured by
robot moving straightly toward goals without adversarial
interference. (iii) Extra distance: The difference between
average travel distance over all testing cases and the travel
distance measured by the protagonist moving straightly to-
wards the goal without adversarial interference. (iv) Average
speed: The average speed of the protagonist achieving goal.

2) Baseline Methods: We consider the following baseline
methods: (i) ORCA [43], a centralized method that have a
central sever controlling all agents. (ii) CADRL [32], an
agent-level decentralized method with each agent accesses
precise state information. The purpose of comparing with
CADRL is to show that even with more crude input, our
method achieves higher performance. (iii) DRLMACA [17],
a fully decentralized method in which a same policy is
trained for all agents in several multi-agent environments.

x
Fig. 4: Protagonists’ reward curves for collision avoidance policy
learning. The learning curves of Discrete, Linear, Sigmoid path-
following policy learning strategy converge around the reward 20.

C. Policy Training

Figure 4 evaluates the influence of different updating
rules of τ (noted as Discrete, Sigmoid and Linear) on
policy training. We see two dramatic drop down of the blue
curve (discrete) corresponding to where adversaries change
their aggressiveness intensity. Whenever τ increase 0.5 after
each training epoch, it brings dramatic hardness to the
environment. However, after several episodes, the protagonist
becomes accustomed to the new switch and converges by the
end. Unlike the bumpy curve from the discrete case, the other

two reward curves change more smoothly with the Linear’s
reward slightly outperforms the sigmoid’s. The reason could
be the hardness of sigmoid starts increasing more rapidly
than linear in the halftime which is more challenging for the
protagonist to adapt. At the end, no matter in which way, all
three methods converge to the same level.

(a) Our method (b) DRLMACA

(c) CADRL (d) ORCA

Fig. 5: The trajectory plots of 6 robots that are equally divided
into two groups trying to reach the opposite positions. The interval
between two adjacent footprints is 1s. ORCA moves extremely
slow inferred by dense points in a trajectory but almost following
the optimal path. CADRL moves fast while traveling longest.
Some redundant trajectories shaped in circles are observed using
DRLMACA. Our method achieves the best balance between time
and travelling distance.

D. Simulation Results

We compare our method with the baselines under both
non-adversarial Figure 5 and adversarial environments Figure
3. All agents have identical size and speed same across
different methods.

1) Non-adversarial Scenario: We place 6 robots in two
groups facing each other. They’re required to reach the posi-
tions their opposite agents located. We visualize the obtained
trajectory plots in Figure 5. As expected, all methods achieve
high success rate in this non-adversarial scenario. However,
the CADRL and ORCA exploit global information which
is not needed by our method. We observe that CADRL
and ORCA chose completely opposite strategies for collision
avoidance. CADRL is more aggressive with very high speed
but takes much longer distance to reach the goal. In contrast,
ORCA behaves extremely cautious and spend a large amount
of time carefully calculating the shortest path. DRLMACA
and our method achieve a better comprise of these two
extremes with our method outperforms DRLMACA.

Also, from Figure 6, our method significantly outperforms
the the remaining methods, with higher speed, shorter time
and distance. We also see a gradient pattern within our three
updating rules across all 4 histograms: the discrete performs
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best, followed by linear and sigmoid. It indicates that sharp
intensity change brings more robustness to mobile robot.

Fig. 6: Performance metrics in non-adversarial scenario. We see
that all methods achieve high success rate, but our methods per-
forms better on extra time and extra distance.

2) Adversarial Scenario: Having demonstrated the supe-
rior performance of our method in normal setting, we now
compare the policies learnt using our method with the three
baselines in the adversarial scenarios described in Figure 3.
In these experiments, the protagonist is controlled by each
policy being compared while the adversaries are controlled
by the adversarial policies obtained from adversarial training
described in Section IV-C.

We present the comparison results in Figure 7. It is easy
to see that our method outperforms all other baseline meth-
ods in the adversarial environments and behaves especially
competitive in the chasing paradigm. This is due to the fact
that the other baseline methods rarely consider the scenario
that the adversarial agents might move towards the protagnist
from behind.

Fig. 7: Performance metrics in adversarial scenarios. Our method
performs the best in all four metrics while DRLMACA has abnor-
mal behaviours when confronting adversarial agents.

ORCA behaves badly as expected since its reciprocal
assumption of t he adversarial agents is violated. In contrast,
CADRL handles the adversarial environment pretty well
since the protagonist has perfect knowledge of the adver-
saries’ intents. Compared to the non-adversarial scenario,
CADRL still achieves the highest speed but with a lower
success rate. It’s worth noting that DRLMACA has an
abnormally high extra distance and travel time. It seems
terribly frightened once the nearby agents deliberately move
towards it rather than actively moving away.

E. Real-World Experiments

To test the transferability of our trained policy to physical
robots in the real world, we deploy the policy trained
using the Discrete updating rule on a mobile robot platform
Turtlebot3 waffle pi. This robot is equipped with
LDS-01, a 2D LIDAR sensing 360 degrees with 0.12 to
3.5 meter range and a scan rate of 300 ± 10 rpm. The
robot is controlled with the maximum speed 1m/s. The
on-board computer of waffle pi is Raspberry Pi 3
with Robot Operating System (ROS) installed. Our control
policy samples actions at a rate of 50Hz. In the real-world
deployment, we first place the robot in an environment with
dense pedestrians randomly moving around, then test the
policy when several humans try to block it from different
directions as shown in Figure 8. For the experiments, we
randomly generate goal positions for the robot. Using our
the learnt policy, the robot navigates very smoothly in many
challenging scenarios, demonstrating the practical efficacy of
our method.

Fig. 8: A real-world deployment. We deploy our collision avoid-
ance policy on turtlebot3. The red arrows represent the moving
directions of the robot. The result shows that when two pedestrians
try to maliciously block the robot, our trained collision avoidance
policy still find a collision-free path for the robot.

V. CONCLUSIONS
We propose to learn robust collision-avoidance policies

via Markov games by introducing multiple auxiliary agents
to model a competing environment. The experiments show
that our path-following adversarial policy learning strategy
significantly improves the sample complexity and adaptivity
of the trained primary agent (i.e., the robot). Promising
experimental results on a physical robot also demonstrate that
the superior performance of the learnt policy is generalized
to new scenarios. Future work will consider combining tree-
based random search global planning algorithms with our
learnt policy to navigate robots in crowded scenarios.
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ized multi-agent reinforcement learning with networked agents,” arXiv
preprint arXiv:1802.08757, 2018.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[37] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch,
“Emergent complexity via multi-agent competition,” arXiv preprint
arXiv:1710.03748, 2017.

[38] A. Gleave, M. Dennis, N. Kant, C. Wild, S. Levine, and S. Russell,
“Adversarial policies: Attacking deep reinforcement learning,” arXiv
preprint arXiv:1905.10615, 2019.

[39] X. Pan, D. Seita, Y. Gao, and J. Canny, “Risk averse robust adversarial
reinforcement learning,” arXiv preprint arXiv:1904.00511, 2019.

[40] R. Vaughan, “Massively multi-robot simulation in stage,” Swarm
intelligence, vol. 2, no. 2-4, pp. 189–208, 2008.

[41] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine learning proceedings 1994. Elsevier,
1994, pp. 157–163.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[43] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research. Springer, 2011,
pp. 3–19.

[44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

11344


